| EWAD720C6XS | EWAD810C6XS | EWAD890C6XS | EWAD990C6XS | EWADC10C6XS | EWADC11C6XS | EWADC12C6XS | EWADC13C6XS | EWADC14C6XS | EWADC15C6XS | EWADC16C6XS | EWADC17C6XS | EWADC18C6XS | EWADC19C6XS | EWADC20C6XS | EWADC21C6XS | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sound pressure level | Cooling | Nom. | dBA | 82 (2) | 82 (2) | 82 (2) | 82 (2) | 83 (2) | 82 (2) | 82 (2) | 82 (2) | 82 (2) | 82 (2) | 83 (2) | 83 (2) | 83 (2) | 83 (2) | 83 (2) | 83 (2) | |
| Compressor | Type | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | Asymmetric single screw compressor | |||
| Quantity | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | ||||
| Weight | Operation weight | kg | 5,940 | 6,430 | 6,600 | 7,350 | 7,370 | 8,360 | 8,630 | 9,890 | 9,890 | 9,890 | 12,260 | 12,890 | 13,470 | 13,470 | 13,470 | 13,470 | ||
| Unit | kg | 5,690 | 6,190 | 6,360 | 6,940 | 6,970 | 7,970 | 8,240 | 8,900 | 8,900 | 8,900 | 11,400 | 12,010 | 12,600 | 12,600 | 12,600 | 12,600 | |||
| Air heat exchanger | Type | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | High efficiency fin and tube type with integral subcooler | |||
| EER | 3.25 (1) | 3.27 (1) | 3.16 (1) | 3.22 (1) | 3.12 (1) | 3.28 (1) | 3.21 (1) | 3.29 (1) | 3.12 (1) | 3.02 (1) | 3.25 (1) | 3.14 (1) | 3.15 (1) | 3.05 (1) | 2.95 (1) | 2.87 (1) | ||||
| ESEER | 4.17 | 4.23 | 4.06 | 4.19 | 4.06 | 4.22 | 4.09 | 4.34 | 4.25 | 4.24 | 4.16 | 4.25 | 4.27 | 4.21 | 3.85 | 4.00 | ||||
| Refrigerant | Type | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | |||
| Circuits | Quantity | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | |||
| Fan motor | Speed | Cooling | Nom. | rpm | 850 | 850 | 850 | 850 | 850 | 850 | 850 | 850 | 850 | 850 | 850 | 850 | 850 | 850 | 850 | 850 |
| Cooling capacity | Nom. | kW | 719 (1) | 810 (1) | 888 (1) | 999 (1) | 1,071 (1) | 1,195 (1) | 1,279 (1) | 1,348 (1) | 1,444 (1) | 1,558 (1) | 1,730 (1) | 1,765 (1) | 1,856 (1) | 1,923 (1) | 2,000 (1) | 2,077 (1) | ||
| Water heat exchanger | Water volume | l | 251 | 243 | 243 | 403 | 403 | 386 | 386 | 979 | 979 | 979 | 850 | 871 | 850 | 850 | 850 | 850 | ||
| Type | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | Single pass shell & tube | ||||
| Power input | Cooling | Nom. | kW | 221 (1) | 248 (1) | 281 (1) | 310 (1) | 343 (1) | 364 (1) | 399 (1) | 410 (1) | 463 (1) | 517 (1) | 532 (1) | 562 (1) | 589 (1) | 631 (1) | 677 (1) | 724 (1) | |
| Sound power level | Cooling | Nom. | dBA | 102 | 103 | 103 | 103 | 104 | 104 | 105 | 105 | 105 | 105 | 106 | 106 | 106 | 106 | 106 | 106 | |
| Dimensions | Unit | Width | mm | 2,285 | 2,285 | 2,285 | 2,285 | 2,285 | 2,285 | 2,285 | 2,285 | 2,285 | 2,285 | 2,285 | 2,285 | 2,285 | 2,285 | 2,285 | 2,285 | |
| Depth | mm | 6,285 | 7,185 | 7,185 | 8,085 | 8,085 | 9,885 | 9,885 | 9,885 | 9,885 | 9,885 | 12,985 | 13,885 | 14,785 | 14,785 | 14,785 | 14,785 | |||
| Height | mm | 2,540 | 2,540 | 2,540 | 2,540 | 2,540 | 2,540 | 2,540 | 2,540 | 2,540 | 2,540 | 2,540 | 2,540 | 2,540 | 2,540 | 2,540 | 2,540 | |||
| Capacity control | Minimum capacity | % | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | ||
| Method | Stepless | Stepless | Stepless | Stepless | Stepless | Stepless | Stepless | Stepless | Stepless | Stepless | Stepless | Stepless | Stepless | Stepless | Stepless | Stepless | ||||
| Fan | Air flow rate | Cooling | Nom. | l/s | 59,932 | 69,921 | 69,921 | 79,909 | 79,909 | 99,886 | 99,886 | 99,886 | 99,886 | 99,886 | 129,852 | 139,841 | 149,830 | 149,830 | 149,830 | 149,830 |
| Compressor | Starting method | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | Wye-Delta | |||
| Power supply | Phase | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | |||
| Frequency | Hz | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | |||
| Voltage | V | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 380 | |||
| Notes | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. | ||||
| (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 | |||||
| (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | |||||
| (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % | |||||
| (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. | |||||
| (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current | |||||
| (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. | |||||
| (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 | |||||
| (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | (9) - Fluid: Water | |||||